Neurological Deficits of an Rps19(Arg67del) Model of Diamond-Blackfan Anaemia.
نویسندگان
چکیده
Diamond-Blackfan anaemia is a rare disease caused by insufficient expression of ribosomal proteins and is characterized by erythroid hypoplasia often accompanied by growth retardation, congenital craniofacial and limb abnormalities. In addition, Diamond-Blackfan anaemia patients also exhibit a number of behavioural abnormalities. In this study we describe the behavioural effects observed in a new mouse mutant carrying a targeted single amino acid deletion in the ribosomal protein RPS19. This mutant, created by the deletion of arginine 67 in RPS19, exhibits craniofacial, skeletal, and brain abnormalities, accompanied by various neurobehavioural malfunctions. A battery of behavioural tests revealed a moderate cognitive impairment and neuromuscular dysfunction resulting in profound gait abnormalities. This novel Rps19 mutant shows behavioural phenotypes resembling that of the human Diamond-Blackfan anaemia syndrome, thus creating the possibility to use this mutant as a unique murine model for studying the molecular basis of ribosomal protein deficiencies.
منابع مشابه
Glucocorticoids improve erythroid progenitor maintenance and dampen Trp53 response in a mouse model of Diamond–Blackfan anaemia
Diamond-Blackfan anaemia (DBA) is a rare congenital disease causing severe anaemia and progressive bone marrow failure. The majority of patients carry mutations in ribosomal proteins, which leads to depletion of erythroid progenitors in the bone marrow. As many as 40% of all DBA patients receive glucocorticoids to alleviate their anaemia. However, despite their use in DBA treatment for more tha...
متن کاملPathogenesis of the erythroid failure in Diamond Blackfan anaemia.
Diamond Blackfan anaemia (DBA) is a severe congenital failure of erythropoiesis. Despite mutations in one of several ribosome protein genes, including RPS19, the cause of the erythroid specificity is still a mystery. We hypothesized that, because the chromatin of late erythroid cells becomes condensed and transcriptionally inactive prior to enucleation, the rapidly proliferating immature cells ...
متن کاملStudy of the effects of proteasome inhibitors on ribosomal protein S19 (RPS19) mutants, identified in patients with Diamond-Blackfan anemia.
BACKGROUND Mutations in the ribosomal protein S19 gene (RPS19) have been found in 25% of patients with Diamond-Blackfan anemia, a rare syndrome of congenital bone marrow failure characterized by erythroblastopenia and various malformations. Mechanistic understanding of the role of RPS19 in normal erythropoiesis and in the Diamond-Blackfan anemia defect is still poor. However, defective ribosome...
متن کاملMice with ribosomal protein S19 deficiency develop bone marrow failure and symptoms like patients with Diamond-Blackfan anemia.
Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by a functional haploinsufficiency of genes encoding for ribosomal proteins. Among these genes, ribosomal protein S19 (RPS19) is mutated most frequently. Generation of animal models for diseases like DBA is challenging because the phenotype is highly dependent on the level of RPS19 down-regulation. We report the generatio...
متن کاملEnhanced alternative splicing of the FLVCR1 gene in Diamond Blackfan anemia disrupts FLVCR1 expression and function that are critical for erythropoiesis.
BACKGROUND Diamond-Blackfan anemia is a fatal congenital anemia characterized by a specific disruption in erythroid progenitor cell development. Approximately 25% of patients have mutations in the ribosomal protein RPS19 suggesting that Diamond-Blackfan anemia may be caused by a defect in ribosome biogenesis and translation. However, it is unclear how these defects specifically disrupt early er...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Folia biologica
دوره 62 4 شماره
صفحات -
تاریخ انتشار 2016